***** CONFIDENTIAL **** ***** PREDECISIONAL DOCUMENT ****

SUMMARY SCORESHEET FOR COMPUTING PROJECTED HRS SCORE

SITE NAME: SOLAR TURBINES INTERNATIO	WAL		
CITY, COUNTY: SAN DIEGO			
EPA ID #:	EVALUATOR:	LAURA KAD	LEGK
PROGRAM ACCOUNT #: FCA/606RAA	DATE:	APRIL 30, 10	191
Lat/Long: 32° 42′55" /177°11′50" T/	R/S: 116	SR3W	
THIS SCORESHEET IS FOR A: PA			
SIRe PA Redo Other (Specify) Ro			
RCRA STATUS (check all that apply):			
✓ Generator Small Quantity Generator	Transpor	ter TSDE	
Not Listed in RCRA Database as of (date of			
STATE SUPERFUND STATUS:			
BEP (date)/ WQARF	(date)/	,	
X No State Superfund Status (date) 1/ /4			
	S pathway	S ² pathway	
Groundwater Migration Pathway Score (Sgw)	0	0	
Surface Water Migration Pathway Score (S _{SW})	0.25	0.06	
Soil Exposure Pathway Score (S _S)			
Air Migration Pathway Score (Sa)	3.16	9.99	
$S_{gw}^2 + S_{sw}^2 + S_{s}^2 + S_{a}^2$	**********	10.05	
$(S_{gw}^2 + S_{sw}^2 + S_s^2 + S_a^2)/4$	**********	2.51	
$\int (S^2_{gW} + S^2_{gW} + S^2_{g} + S^2_{g})/4$	************	1,61	

*Pathways not assigned a score (explain):

SOIL EXPOSURE NOT EVALVATED BECAUSE ENTIRE SITE IS DAVED AND THE ABOVE GROUND WASTES ATPEAR TO HAVE ADEQUATE CONTAINMENT.

>/hrs

14-March-1991

GROUNDWATER MIGRATION PATHWAY SCORESHEET

Factor Categories and Factors

	<u>Likelihood of Release</u>	Maximum Value	Projected Score	Rationale	Data Qual.	
1.		550				
	2a. Containment	10	1	2		
	2b. Net Precipitation	10	1	3		
	2c. Depth to Aquifer 2d. Travel Time	5	5	4_		
	2e. Potential to Release	35	_ 25	5		
2	[Lines 2a x (2b+2c+2d)]	500	217			
3.	Likelihood of Release (Higher of lines 1 or 2e)	550	217			
	Waste Characteristics					
4.	Toxicity/Mobility	a	10	6		
5.		a	100	7		
6.						
	4 x 5, then use Table 2-7)	100				
	Targets					
7.		50		8		
8.	Population 8a. Level I Concentrations					
	8b. Level II Concentrations	b				
	8c. Potential Contamination	b				
	8d. Population (lines 8a+8b+8					
9.	Resources	5	0	9		
10.	Wellhead Protection Area	20	0		TO SHOW	
11.	Targets (lines 7+8d+9+10)	ь				
	Likelihood of Release					
12.	Aquifer Score					
	[(Lines $3 \times 6 \times 11)/82,500$] ^c	100	0			
Groun	ndwater Migration Pathway Score					
13.	Pathway Score (Sgw), (highest value from line 12 for all aquifers evaluated)	100	o c			

a Maximum value applies to waste characteristics category. b Maximum value not applicable.

c Do not round to the nearest integer.
d Use additional tables.

SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT SCORESHEET

Factor Categories and Factors

DRINKING WATER THREAT

DKTN	KING WATER THREAT				
	Likelihood of Release	Maximum Value	Projected Score	Rationale	Data Qual.
1.	Potential to Release by	550	0		
	Overland Flow 2a. Containment 2b. Runoff	10 25	7	4.	
	2c. Distance to Surface Wate 2d. Potential to Release by		10		
3.	Overland Flow [lines 2a x (2b+2c)] Potential to Release by Flood	500	141		
	3a. Containment (Flood) 3b. Flood Frequency	10 50	10 25	12.	
4.	3c. Potential to Release by Flood (lines 3a x 3b) Potential to Release	500	250		
	(Lines 2d+3c, subject to a maximum of 500)	500	347		
5.	Likelihood of Release (Higher of lines 1 or 4)	550	391		
	Waste Characteristics				
6. 7. 8.	Toxicity/Persistence Hazardous Waste Quantity Waste Characteristics	a a	400	<u>H</u>	
	(lines 6 x 7, then assign a value from Table 2-7)	100	10		
	Targets				
9. 10.	Nearest Intake Population	50		10	
	10a. Level I Concentrations 10b. Level II Concentrations 10c. Potential Contamination 10d. Population (lines 10a +	b b b			
11.	10b+10c) Resources Targets (lines 9+10d+11)	b 5 b	5	16	
	Drinking Water Threat Score				
13.	Drinking Water Threat [(Lines 5 x 8 x 12)/82,500, subject to a maximum of 100]	100	0.24		

SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT SCORESHEET (CONTINUED)

Factor Categories and Factors

HUMAN	FOOD	CHAIN	THREAT

	Likelihood of Release	Maximum Value	Projected Score	Rationale	Data Qual.
14.	Likelihood of Release (Same value as line 5)	550	397		
	Waste Characteristics				
15. 16. 17.	Toxicity/Persistence/ Bioaccumulation Hazardous Waste Quantity Waste Characteristics (Toxicity/Persistence x	a a	50000	11 1	
	Hazardous Waste Quantity x Bioaccumulation, then assign a value from Table 2-7) Targets	1,000			_
18.	Food Chain Individual Population	50		18	
	19a. Level I Concentrations 19b. Level II Concentrations 19c. Potential Human Food	p p	=		
	Chain Contamination	b			
20.	19d. Population (lines 19a+19b+19c) Targets (lines 18+19d)	b b	0.04	18	
H	uman Food Chain Threat Score				
21.	Human Food Chain Threat [(Lines 14 x 17 x 20)/82,500 subject to a maximum of 100]	100	0.01		

SURFACE VATER OVERLAND/FLOOD HIGRATION COMPONENT SCORESHEET (CONTINUED)

Factor Categories and Factors

ENVIRONMENTAL THREAT

RMATI	RUNMENTAL THREAT				
	Liklelihood of Release	Maximum Value	Projected Score	Rationale	Data Qual.
22.	Likelihood of Release (Same value as line 5)	550	397		
	Waste Characteristics				
23.	Ecosystem Toxicity/Persistence Bioaccumulation	e/ a	500000	19	
24.	Hazardous Waste Quantity Waste Characteristics (Ecosystem Tox./Persistence x	a	100		
	Hazardous Waste Quantity x Bioaccumulation, then assign a value from Table 2-7)	1,000	_56	-	
	Targets				
26.	Sensitive Environments ^d 26a. Level I Concentrations 26b. Level II Concentrations 26c. Potential Contamination 26d. Sensitive Environments (lines 26a+26b+26c)	b b b	0.004	==	
27.	Targets (Value from line 26d)	b	0.004		
	Environmental Threat Score				
28.	Environmental Threat Score [(lines 22 x 25 x 27)/82,500 subject to a maximum of 60]	60	0.00		

SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT SCORE FOR A WATERSHED

29. Watershed Score [(Lines 13+21+28), subject to a maximum of 100] 100

SURFACE VATER OVERLAND/FLOOD MIGRATION COMPONENT SCORE

30. Component Score (Sof)
(Highest score from Line 29
for all watersheds evaluated,
subject to a maximum of 100)

0.25

a Maximum value applies to waste characteristics category.

b Maximum value not applicable.

c Do not round to the nearest integer.

d Use additional tables

SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT CALCULATIONS (CONTINUED)

20. Food Chain Targets

Actual Contamination

Fishery	Contaminant	Concen- tration	Benchmark	(A) Assigned Population Value (Table 4-18)	(B) Level* Multiplier	(A x B)
				Sum (A x B) Sum (A x B)		

* <u>Level Multipliers</u> - Level I = 10

- Level II = 1

Potential Contamination

Fishery	Production (lb/yr)	(P) Assigned Population Value (Table 4-18)	Average Stream Flow at Fishery (cfs)	(DW) Dilution Weighting Factor (Table 4-13)	(P x DW)
LOBGRER	271000	310	SHALLOW 9	0.0001	0.031
SEA URLHIN	2000 000	3100	OZEAN	0.0001	0.31
ROCK CRAB	177000	310	20NE	0.0001	0.031
OTHER	160 300	310	+	0.0001	0.031
				Sum (P x DW)	0.403

Fisheries Subject to Potential Contamination = $\frac{\text{Sum (P x DW)}}{10}$ = $\frac{\emptyset.04}{}$

AIR MIGRATION PATHWAY SCORESHEET

Factor Categories and Factors

	Likelihood of Release	Maximum Value	Projected Score	Rationale	Data Qual.
1.		550	_ 0		
2.	2a. Gas Potential 2b. Particulate Potential 2c. Potential to Release	500 500	135	10	
3.	(higher of lines 2a and 2b) Likelihood of Release	500	<u>135</u>		
	(higher of Lines 1 or 2c)	550	1.30		
	Waste Characteristics				
4. 5. 6.	Waste Characteristics	a a	1000	71	
	(lines 4 x 5, then use Table 2-7)	100	18		
	Targets				Len.
7.	Nearest Individual Population	50	1		
•	8a. Level I Concentrations 8b. Level II Concentrations 8c. Potential Contamination 8d. Population (8a+8b+8c)	b b b b			
9.	Resources Sensitive Environments	5	5		
	10a. Actual Contamination 10b. Potential Contamination 10c. Sensitive Environments		0.64		
11.	(lines 10a+10b) Targets (Lines 7+8d+9+10c)	c b	107.34		
ir Pa	thway Migration Score				
12.	Air Pathway Score (Sa) [(lines 3 x 6 x 11)/82,500]	100	3.16 d		

a Maximum value applies to waste characteristics category. b Maximum value not applicable.

d Do not round to nearest integer.

e Use additional tables.

c No specific maximum value applies to factor. However, pathway score based solely on sensitive environments is limited to a maximum of 60.

AIR PATHWAY CALCULATIONS

2. Potential to Release

Gas Potential to Release

	Source Type (Name)	Gas Containment Factor Value (Table 6-3)	Gas Source Type Factor Value (Table 6-4)	Gas Migration Potential Factor Value (Table 6-7)	Sum	Gas Source Value
	TANKS:	(A)	(B)	(C)	(B+C)	A x (B+C)
1.	CONTAINERS		28	<u> </u>	45	135
2.				The latest and the la		
3.						
4.				No. of the last of		
				to Release Facto		

Particulate Potential to Release

	Source Type (Name)	Particulate Containment Factor Value (Table 6-9)	Particulate Source Type Factor Value (Table 6-4)	Particulate Migration Potential Factor Value (Figure 6-2)	Sum	Particulate Source Value
	TANKS !	(A)	(B)	(C)	(B+C)	A x (B+C)
1.	CONTAINERS	3	14	17	31	93
		And the second				
•					Terretagn.	
	11 65					
		Particul (Select	ate Potential t	o Release Facto	r Value Value)	93

AIR PATHWAY CALCULATIONS (CONTINUED)

8. Potential Contamination

Distance (miles)	Total Population Within Distance Ring		(A) ance-Weighte Value (Tabl	
On site (0)			522	
>0 to 0.25			0	
>0.25 to 0.5			0.	
>0.5 to 1			26	
>1 to 2			266	
>2 to 3			120	
>3 to 4			73	
	Sum of (A) =		1001	
	ntamination Factor Value =	Sum of (A) =	100.7	
	ntamination Factor Value = nvironments	Sum of (A) = 10	100.1	
10. <u>Sensitive Endeted</u> Actual Conta	ntamination Factor Value = nvironments unination (A) Sensitive	(B)	100.1	
Actual Conta Wetland or Type of Sensitive	ntamination Factor Value = nvironments mination (A)		100.1	(A + B)
Actual Conta Wetland or Type of Sensitive	ntamination Factor Value = nvironments mination (A) Sensitive Environment Rating Value	(B) Wetland Rating Value	100.1	(A + B)
Actual Conta Wetland or Type of Sensitive	ntamination Factor Value = nvironments mination (A) Sensitive Environment Rating Value	(B) Wetland Rating Value		(A + B)
O. Sensitive En Actual Conta Wetland or Type of Sensitive	ntamination Factor Value = nvironments mination (A) Sensitive Environment Rating Value	(B) Wetland Rating Value	100.1	(A + B)
Actual Conta Wetland or Type of Sensitive	ntamination Factor Value = nvironments mination (A) Sensitive Environment Rating Value	(B) Wetland Rating Value	100.1	(A + B)
Actual Conta Wetland or Type of	ntamination Factor Value = nvironments mination (A) Sensitive Environment Rating Value	(B) Wetland Rating Value	100.1	(A + B)

AIR PATHWAY CALCULATIONS (CONTINUED)

Potential Contamination

Wetland or Type of Sensitive Environment	(A) Sensitive Environment Rating Value (Table 4-23)	(B) Wetland* Rating Value (Table 6-18)	(DW) Distance Distance Weights (miles) (Table 6-15)	DW x (A + B)					
LEAGI TERN	100		0.016	1.6					
GNATCATCHER	50		0.016	0.8					
SNAKE CHOILA	50		0.016	0.8					
SPINE FLOWER	50		0.016	0.8					
MILK VETCH	50		0.016	0.8					
BIRDS BEAK	100		0.016	1.6					
			Sum DW x (A + B)	6.4					
Potential Contamination Sensitive Environments Factor Value = Sum DW x (A + B) =									

Sensitive Environments Factor Value = $\frac{\text{Sum DW x (A + B)}}{10}$ = $\frac{0.64}{}$

^{*} Only assign a Wetland Rating Value once for each wetland within a distance category.

20000

10

100

Site Name	City	/State _			Page	_ of	lis.			
HAZARDOUS SUBSTANCES CHARACTERIZATION WORKSHEET										
List up to six hazardous substances here———————————————————————————————————	CHROWIUM	TCA	TUE	XYLENE	TOUTANE	CILLOROBENZENE	LARBON TETRACHIOR			
Pathways: A, GW, SW, OS						12.5				
Toxicity	1	10	10	1	10	100	1000			
AIR: GasG/PartP/Both-B										
Gas Mobility*	0	1_	_1_	1		1	1			
Particulate Mobility*	1	0	0	0	0	0	0			
Source Mobility*	0	<u>n</u>		_11	17	11	17			
Toxicity/Mobility*	1	10	10		16	100	1000			
GROUNDWATER: Mobility	0.00002	0.01	0.01	0.01	0.01	0.01	0.01			
Toxicity/Mobility	2×10-5	0-1	0-1	0.01	0.1		10			
SURFACE VATER: Pers., River	1	0.4	0.4	0.0007	0.4	0.4	0.4			
Persistence, Lake	1	0.4	0.4	0.4	0.4	0.4	0.4			
DRINKING WATER: Tox/Pers		4	4	0.4	4	40	400			
Bioaccumulation Factor (BCF)	50000	50	50	500	50	50	50			
						THE RESERVE AND ADDRESS OF THE PARTY OF THE				

*Mobility values are used to evaluate both Source Mobility and Tox/Mobility. Note specific rules for each (See Sections 2.1.2.3 and 2.2.1.2). **Only complete for hazardous substance avail. to SW with highest BCF factor. ***Use Ecosystem toxicity (fresh or salt, as appropriate).

200

100

100

200

100

100

FOOD CHAIN: Tox/Pers 18 50000

Ecosystem Toxicity, Fresh

Ecosystem Toxicity, Salt

ENVIRONMENTAL: Tox/Pers 180F 500000

RATIONALE 1. FIT was unable to find any documentation of groundwater contamination. 2. Those sources which contain the highest containment value are 55-gallon drums stored in the hazardous waste storage yard. There has been no hazardous substance migration from containers in the area. The area is surrounded by sound diking and has an essentially impervious base of asphalt. 3. Net PPT is 3 inches. 4, Depth to aquifer is 20 feet. Soils 10-20 feet beneath the site consist primarily of fine_gilty 5. sand deposits exhibiting a hydraulic conductivity of 1 x 10-4 cm/s. 6. Carbon tetrachloride gives the highest toxicity/mobility value. (See attached worksheet). 7. Hazardous waste quantity in 1989 was approximately 995,000 pounds (4,975 cubic yards). The waste included process waste and contaminated soil. 8. Groundwater is not used for any purpose within 4 miles of the site. 9. The facility has a maintained cover and some locations on site have a run-off system. Soils beneath the site are comprised of silty and clayey fine-grained sand, and belong to soil group designation D. The drainage area is less than 50. The 2-year, 24-hour rainfall is 1.8 inches. 11. San Diego Bay is 300 feet west of the facility. Containment of sources at the site are not designed to prevent a 12. washout of hazardous substances by a flood. 13. The facility lies in a 100-year floodplain. Carbon tetrachloride gives the highest toxicity/persistence value 14. (See attached worksheet). 15. Surface water located within 15 miles of the site is not used for drinking purposes. 16. San Diego Bay, 200 feet from the site, is a major recreation are. Chromium gives the highest toxicity/persistence/BCF value (See attached worksheet). lk/st/rat

RATIONALE (Cont.)

- 18. In 1989 the commercial fishery within 15 miles of the site caught: 271,000 lbs. of Spiny Lobster; 2,000,000 lbs. of Sea Urchin; 177,000 lbs. of Rock Crab; and 260,300 lbs. of 'other' fish including 53,000 lbs. of Halibut, 7,300 lbs. of White Sea Bass and 200,000 lbs. of Rock Fish.
- 19. Chromium gives the highest ecotoxicity/persistence/BCF value (See attached worksheet).
- 20. Source types consist of above ground storage tanks and drums.
- 21. Carbon tetrachloride gives the highest toxicity/mobility factor (See attached worksheet).